Take a deep dive into the business of transplantation!

Liver Transplant Financial Bootcamp &
Kidney Transplant Financial Bootcamp

Co-located for 2019!

September 19–20, 2019

Loews Chicago O’Hare Hotel

Register at ASTS.org/bootcamps
Islet Transplantation for Brittle Type 1 Diabetes: The UIC Protocol

A. Gangemi, P. Salehi, B. Hatipoglu, J. Martellotto, B. Barbaro, J. B. Kuechle, M. Qi, Y. Wang, P. Pallan, C. Owens, J. Bui, D. West, B. Kaplan, E. Benedetti and J. Oberholzer,

*Division of Transplantation/Department of Surgery,
Section of Endocrinology/Department of Medicine and
Department of Radiology, University of Illinois at Chicago, Chicago, IL

*Corresponding author: José Oberholzer, jober@uic.edu

This prospective phase 1/2 trial investigated the safety and reproducibility of allogeneic islet transplantation (Tx) in type 1 diabetic (T1DM) patients and tested a strategy to achieve insulin-independence with lower islet mass. Ten C-peptide negative T1DM subjects with hypoglycemic unawareness received 1–3 intraportal allogeneic islet Tx and were followed for 15 months. Four subjects (Group 1) received the Edmonton immunosuppression regimen (daclizumab, sirolimus, tacrolimus). Six subjects (Group 2) received the University of Illinois protocol (etanercept, exenatide and the Edmonton regimen). All subjects became insulin-independent. Group 1 received a mean total number of islets (EIN) of $1460 \pm 418 330$ in 2 ($n = 2$) or 3 ($n = 2$) Tx, whereas Group 2 became insulin-independent after 1 Tx ($537 495 \pm 190 968$ EIN, $p = 0.028$). All Group 1 subjects remained insulin free through the follow-up. Two Group 2 subjects resumed insulin: one after immunosuppression reduction during an infectious complication, the other with exenatide intolerance. HbA1c reached normal range in both groups (6.5 ± 0.6 at baseline to 5.6 ± 0.5 after 2–3 Tx in Group 1 vs. 7.8 ± 1.1 to 5.8 ± 0.3 after 1 Tx in Group 2). HYPO scores markedly decreased in both groups. Combined treatment of etanercept and exenatide improves islet graft function and facilitates achievement of insulin-independence with less islets.

Key words: Islet transplantation, transplantation cell therapy, transplantation research, type I diabetes

Introduction

Although major advances in insulin treatment have improved glycemic control, hypoglycemic unawareness remains a major obstacle for optimal glycemic control in many diabetic patients (1). Even under strict study conditions, the incidence of severe hypoglycemia remains high; this complication not only impairs quality of life but also is life-threatening (2,3).

Islet transplantation can eliminate severe hypoglycemia and restore almost normal glycemic control (4). However, there are several limitations to the widespread application of this procedure (4). These limitations include the need for several donors for sufficient islet yield, lifelong immunosuppression and its attendant risks, and loss of islet function over time due to incompletely defined reasons.

At present, clinical trials in islet transplantation face stringent federal regulations that define islets as a biological drug and islet transplantation as an experimental procedure. Limited resources make fully powered, larger-scale trials prohibitive. Despite limitations, collaborative efforts and single-center experiences are improving results and expanding the body of knowledge as a whole. Herein, we present a phase 1/2 trial investigating whether islet transplantation utilizing a protocol designed at the University of Illinois at Chicago is safe and reproducibly successful. The study explored traditional therapy in the first arm, and then tested a regimen of a TNFα receptor antagonist (etanercept, Enbrel®) and a glucagon-like peptide-1 (GLP-1) analogue (exenatide, Byetta®) to explore whether we could improve islet engraftment with a marginal islet dose (5). Exenatide is FDA-approved for treatment of type II diabetes mellitus (6–8). Recently, exenatide was used to decrease need for exogenous insulin and restore first-phase insulin release in islet recipients who lost insulin-independence after transplantation (9). Herein, we explored the de novo use of a combination of etanercept and exenatide to improve allogeneic islet transplant outcomes in brittle type I diabetic patients.

Materials and Methods

Study design

This prospective Phase 1/2 trial was conducted under FDA IND 11 807 and approved by the Institutional Review Board. In this single-center, open label,
uncontrolled trial we performed 1–3 allogeneic pancreatic islet transplants per subject and followed up for 64 weeks (≈15 months) after transplant. This follow-up period was determined to avoid exceeding the maximum acceptable number of blood draws per individual at any time point and to include all safety and metabolic parameters reported herein. Thereafter, subjects were enrolled in a 5-year follow-up study.

The first objective was to demonstrate the safety of allogeneic islet transplantation in type I diabetic patients performed at the University of Illinois at Chicago (UIC). Therefore, the first four patients (Group 1) were transplanted according to the Edmonton protocol. The second objective was to implement a strategy to achieve insulin-independence with a minimal quantity of islets. Therefore, the next six consecutive patients (Group 2) were transplanted using the UIC protocol detailed below.

Primary efficacy endpoint
The primary efficacy endpoint was independence from insulin injections with adequate control of blood glucose. Insulin-independence was defined as freedom of exogenous insulin injection while achieving fasting glucose levels not exceeding 140 mg/dL more than three times in a week, and not exceeding 2-h postprandial values of 180 mg/dL more than four times in a week. The proportion of insulin-independent subjects meeting the criteria for glucose control was determined at 2 weeks and 1, 3, 6, 12 and 15 months after their final transplants.

Subjects who had reduced insulin requirements but did not achieve insulin-independence and presented reduced HbA1c and number of hypoglycemic episodes were considered to have partial islet graft function.

Absence of measurable levels of C-peptide (<0.03 ng/mL) after transplantation was considered islet failure.

Secondary endpoints

-
 HbA1c was compared between the last value before transplantation and 3, 6, 12 and 15 months after islet transplant. HbA1c reaching normal values of less than 6.5% by 3, 6, 12 and 15 months after first transplant and continuing for 12 months after the final transplant was considered a success.

-
 Fructosamine was compared between the last value before transplantation and 3, 6, 12, and 15 months after islet transplant.

-
 Oral glucose tolerance tests (OGTT) were conducted 6 and 12 months postislet transplant. OGTT was judged normal if blood glucose was below 140 mg/dL after 2 h, impaired if blood glucose was between 140 and 199 mg/dL and diabetic if blood glucose was above 199 mg/dL.

-
 Mixed meal tests (MMT) were conducted before transplantation and 6 and 12 months posttransplant. Acute C-peptide response and blood glucose levels to a standard mixed meal test were compared.

-
 Glucagon stimulation test (GST) values were measured before transplantation and 6 and 12 months posttransplant. The fold-increase in C-peptide levels 6 min after glucagon injection was evaluated.

-
 Intravenous glucose tolerance test (IVGTT) values were taken at 6 and 12 months posttransplant. We calculated acute insulin response to intravenous glucose challenge (AIR-IVGTT) as an indicator of islet mass (10).

-
 Hypoglycemia was evaluated by the Ryan HYPO score (11) before and 12 months after transplantation. To calculate the HYPO score, subjects performed blood sugar self-assessments for 4 weeks during the 6 months pretransplant and 12 months after transplantation. Points were awarded for each occurrence of documented hypoglycemia and for neuroglycopenic symptoms.

-
 Glycemia status: Subjects measured and recorded blood sugar values seven times per day before and after transplantation: fasting, mom-
Gangemi et al.

included criteria defined in the suitability determination for donors of human cellular and tissue-based products final rule and the Centers for Disease Control high-risk criteria for blood-borne pathogens. Quality screening exclusion criteria included donor age < 25 or > 75 years, warm ischemia, cold ischemia > 12 h, non-heart beating donors, and BMI < 19. Negative crossmatch with the donor was required for transplant. We routinely performed flow cytometric T- and B-cell cross-match with a cut-off at 20 channel shifts for T and 40 channel shifts for B cells.

Islet isolation
The pancreata were trimmed, distended with cold Liberase solution (Liberase-Hi, Roche, Indianapolis, IN), and digested using a modified Ricordi automated method (14). After collection and wash, the tissue was incubated in UW solution (DuPont Pharma, Bad Homburg, Germany) for 30 min. Islets were purified by a continuous UIC-UB gradient (15) on a cell separator (Cobe 2991, Cobe, Lakewood, CO) and then cultured in Culture Media (Mediatech, Herndon, VA) at 37°C for up to 12 h.

Islet evaluation

Islet yield: We assessed quantity and purity of the preparations by Dithi- zone staining (16).

Viability: The percentage of dead and live cells was estimated by fluorescein staining with Syto-Green/Ethidium Bromide (17,18).

In vitro function: Islet function was expressed as a stimulation index (SI) after static incubation with low and high glucose conditions (19).

Islet transplantation
After the portal vein was accessed percutaneously under fluoroscopic and ultrasound guidance, the islets were resuspended into 60 mL syringes and slowly injected into the intraportal catheter. During infusion, syringes were turned constantly to avoid sedimentation or clumping of islets. Heparin was administered throughout the procedure for a total dose of 5000 units per patient received an immunosuppressive regimen of daclizumab, sirolimus and tacrolimus (12). Subjects received daclizumab 1 mg/kg immediately pre-
tacrolimus (12). Subjects received daclizumab 1 mg/kg intravenously imme-
diately before transplantation and 75 mg at 2, 4, 6 and 8 weeks after transplant. Sirolimus was administered at a loading dose of 0.2 mg/kg immediately pre-
transplant, and continued at 0.1 mg/kg/day each morning. Tacrolimus 1 mg was administered immediately before transplantation, and then adjusted to maintain target trough levels of 3–6 ng/mL throughout the study (Figure 1).

Study medication

Edmonton protocol group 1: Based on the Edmonton protocol, subjects received an immunosuppressive regimen of daclizumab, sirolimus and tacrolimus (12). Subjects received daclizumab 1 mg/kg intravenously imme-
diately before transplant and 75 mg at 2, 4, 6 and 8 weeks after transplant. Sirolimus was administered at a loading dose of 0.2 mg/kg immediately pre-
transplant, and continued at 0.1 mg/kg/day each morning. Tacrolimus 1 mg was administered immediately before transplantation, and then adjusted to maintain target trough levels of 3–6 ng/mL throughout the study (Figure 1).

UIC protocol group 2: In addition to the Edmonton protocol immuno-
suppression regimen, the UIC protocol included the TNF-alpha receptor antagonist, etanercept and the glucagon-like peptide-1 (GLP-1) analogue, exenatide. Patients received etanercept 50 mg intravenously before islet transplantation and 25 mg subcutaneously at 3, 7 and 10 days after trans-
plant. Exenatide 5 μg was administered subcutaneously twice daily for 1 week within 60 min before or after the morning and evening meals. If toler-
ated well, the dose was increased to 10 μg twice daily for a total of 6 months after the last islet transplant.

Autoantibody measurement

Antibodies were measured before and after transplant. Autoantibodies were assessed by flow cytometry measurement of class I and II panel reactive antibodies (One Lambda Inc, Los Angeles, CA). Anti-islet antibodies were assessed by indirect immunofluorescence (normal titers <1:4), and anti-GAD antibodies by radioimmunoassay (normal values 0–70 mGAD-U/mL).

Challenge test with or without exenatide
In Group 2 subjects, we measured frequently sampled intravenous glucose tolerance tests (FSIVGTT), C-peptide, proinsulin, amylin and glucagon levels with and without exenatide. Four subjects underwent FSIVGTT at least 12 h after withdrawal of exenatide. Subject 5 was not tested because of illness from infection subsequent to mycrobrosis, and subject 9 did not tolerate exenatide. In a second session, the same subjects injected exenatide before testing. Group 1 subjects underwent only IVGTT without exenatide. We calculated acute insulin response to glucose as the mean of the 3-, 4-, and 5-min insulin values following the glucose injection subtracting the basal value (20). Insulin sensitivity index was calculated using the computer MIN-
MOD mathematical model for FSIVGTT (21).

Statistical analysis
Data were expressed as mean ± SD. Comparisons were performed using two-tailed t-test, Paired t-test or Fisher’s exact test where applicable. SPSS 13.0 (Chicago, IL) was used to run analyses. A p-value < 0.05 was consid-
ered statistically significant. Unless otherwise indicated, all data represent 15 months follow-up after the first islet transplant.

Results

Demographics

Recipients: Ten C-peptide negative diabetic subjects (nine females, one male) received 18 islet allo-
transplantations over 2 years (Table 2). Subjects in Groups 1 and 2 had similar age distribution (49.2 ± 11.3 and 44.8 ± 10.0 years, p = 0.6), diabetes duration (30.2 ± 9.2 and 27 ± 10.8 years, p = 0.6), body weight (61.03 ± 4.27 and 63.8 ± 5.30 kg, p = 0.2), BMI (22.4 ± 1.08 and 22.35 ± 1.01, p = 0.4) and pre-
transplant insulin requirements (39.3 ± 2.9 and 32.1 ± 8.6 U/day, p = 0.5). HbA1c was significantly higher in Group 2 than Group 1 (6.5 ± 0.7 and 7.8 ± 1.1 p = 0.046). GAD au-
toantibody levels were also more elevated in Group 2 than Group 1 (41.8 ± 60.3 vs. 2.3 ± 2.1, p = 0.24). It should be noted that 2/6 patients in Group 2 had GAD levels greater than 100.

Donors and islet graft characteristics

Donor and graft characteristics for both groups are outlined in Table 3.

Safety of procedure and medications

Procedure-related events: Two bleeds occurred in 18 islet infusions (11% of total islet infusions, 20% of to-
tal subjects). One subject experienced an intraperitoneal bleed during withdrawal of the intraportal catheter, which was self-limiting and did not require transfusions or sur-
gical intervention. A second subject with situs viscerum inversus, left isomerism, variant portal venous anatomy and several small hemangiomas developed an intrahepatic hematomata probably resulting from inadvertent puncture of a small hemangiomia coupled with peri-procedural heparin. This subject received two units of packed red blood cells for low posttransplant hemoglobin, and received an additional

American Journal of Transplantation 2008; 8: 1250–1261
Figure 1: Immunosuppression drug levels for both groups during 15 months follow-up. Sirolimus dose was adjusted to maintain target trough serum blood levels of 12–15 ng/mL for the 3 months following the most recent islet infusion and lowered to 7–10 ng/mL subsequently. Target trough level for tacrolimus was 3–6 ng/mL throughout the study. Average AUC for tacrolimus level was 62.4 ± 14.1 in Group 1 versus 48.4 ± 8.1 in Group 2 (p = 0.14). *This patient developed sirolimus complications and switched to mycophenolate mofetil.

Table 2: Pretransplant characteristics for the 10 C-peptide-negative islet transplant recipients with hypoglycemic awareness

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 Mean(SD)</td>
<td>5 6 7 8 9 10 Mean(SD)</td>
</tr>
<tr>
<td>Age, years</td>
<td>F M F F</td>
<td>61 56 43 35 48.8 (11.9)</td>
</tr>
<tr>
<td>Sex, F or M</td>
<td>F M F F</td>
<td>F F F F</td>
</tr>
<tr>
<td>Body weight, kg</td>
<td>54.9 66 60.7 61.7 60.8 (3.9)</td>
<td>71.4 61.8 60 62 66.3 58.6 63.4 (4.3)</td>
</tr>
<tr>
<td>Body mass index</td>
<td>22.9 21.0 20.8 23.0 21.9 (1.0)</td>
<td>22.3 22.5 18.6 23.1 24.1 21.0 21.9 (1.8)</td>
</tr>
<tr>
<td>Diabetes duration, years</td>
<td>36 37 32 17 30.5 (9.3)</td>
<td>29 34 21 10 14 24 22.0 (9.1)</td>
</tr>
<tr>
<td>Daily insulin, U/Kg</td>
<td>35 43 41 44 40.8 (4.1)</td>
<td>44 26 46 26 38 42 37.0 (5.9)</td>
</tr>
<tr>
<td>HbA1c</td>
<td>5.9 6.2 7.4 6.4 6.5(0.6)</td>
<td>8.1 6.9 8.2 9.5 6.7 6.7 7.8 (1.0)</td>
</tr>
<tr>
<td>Hyposcore</td>
<td>2,668 207 218 274 842 (1217.9)</td>
<td>189 2,576 228 71 793 1,020 812.8 (941.7)</td>
</tr>
<tr>
<td>Alloantibodies (class I & II PRA)</td>
<td>0 0 0 0</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Autoantibodies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Anti-GAD65</td>
<td>5.44 1.1 1.0 3.34 2.7 (1.8)</td>
<td>199.4 1.3 2.4 7.9 99.7 4.86 52.6 (74.4)</td>
</tr>
<tr>
<td>- Anti-ICA512</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BMI = body mass index; PRA = panel reactive antibodies.
Table 3: Donor graft characteristics for the 10 C-peptide-negative islet transplant recipients with hypoglycemic awareness

<table>
<thead>
<tr>
<th>Group</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>1st</th>
<th>2nd</th>
<th>1st</th>
<th>2nd</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>59</td>
<td>37</td>
<td>36</td>
<td>30</td>
<td>47</td>
<td>37</td>
<td>43</td>
<td>30</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td>Sex, M/F</td>
<td>M/M</td>
<td>F/M</td>
<td>F/M</td>
<td>M/M</td>
<td>F/M</td>
<td>F/M</td>
<td>F/M</td>
<td>F/M</td>
<td>F/M</td>
<td>F/M</td>
</tr>
<tr>
<td>Body mass index</td>
<td>24</td>
</tr>
<tr>
<td>Cause of death</td>
<td>CVA</td>
<td>MVA</td>
<td>CVA</td>
<td>MVA</td>
<td>CVA</td>
<td>MVA</td>
<td>CVA</td>
<td>MVA</td>
<td>CVA</td>
<td>MVA</td>
</tr>
<tr>
<td>Blood glucose • Admission</td>
<td>150</td>
<td>167</td>
<td>167</td>
<td>167</td>
<td>167</td>
<td>167</td>
<td>167</td>
<td>167</td>
<td>167</td>
<td>167</td>
</tr>
<tr>
<td>• Peak</td>
<td>203</td>
</tr>
<tr>
<td>• Preharvest</td>
<td>167</td>
</tr>
<tr>
<td>HLA-A/B matches</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HLA-DR matches</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cold ischemia time, hr</td>
<td>8.5</td>
</tr>
<tr>
<td>Tissue volume, mL</td>
<td>7.9</td>
</tr>
<tr>
<td>Total islet equivalent (EIN)</td>
<td>652,000</td>
<td>378,000</td>
<td>405,000</td>
<td>569,000</td>
<td>450,000</td>
<td>372,000</td>
<td>716,000</td>
<td>1,094,000</td>
<td>921,000</td>
<td>417,000</td>
</tr>
<tr>
<td>Islet equivalent/kg</td>
<td>11,241</td>
<td>6798</td>
<td>6136</td>
<td>8621</td>
<td>7413</td>
<td>6128</td>
<td>11,604</td>
<td>17,731</td>
<td>14,927</td>
<td>5840</td>
</tr>
<tr>
<td>Islet viability,%</td>
<td>90</td>
<td>80</td>
<td>90</td>
<td>95</td>
<td>85</td>
<td>87</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>Stimulation index</td>
<td>8.6</td>
<td>3.9</td>
<td>1.5</td>
<td>2.6</td>
<td>0.4</td>
<td>4.85</td>
<td>2.26</td>
<td>0.74</td>
<td>0.01</td>
<td>0.18</td>
</tr>
<tr>
<td>Endotoxin, EU/kg</td>
<td>0.91</td>
<td>0.46</td>
<td>0.04</td>
<td>0.26</td>
<td>0.15</td>
<td>0.72</td>
<td>0.18</td>
<td>0.05</td>
<td>0.01</td>
<td>0.17</td>
</tr>
</tbody>
</table>

CVA = cerebrovascular accident; MVA = motor vehicle accident.

Ultimately, she withdrew from the study because of medication side effects. One subject in Group 1 underwent an abdominal hysterectomy for irregular menstrual bleeding and ruptured ovarian cyst possibly related to immunosuppressive medications.

Primary efficacy endpoint

Insulin-independence: All subjects completed the 15 months posttransplant follow-up and became insulin-independent after one or more islet transplants (Figure 3). In Group 1, all subjects remained insulin-free for the 15-month posttransplant observation period. Group 1 subjects received a mean total number of islets (EIN) of 1460 ± 418,330 in 2 (n = 2) or 3 (n = 2) islet infusions to achieve primary insulin-independence (Figure 4). All patients in Group 2 became insulin-independent after the first transplant (537,495 ± 190,968 EIN, p = 0.028 compared to Group 1). Four of the six Group 2 subjects remained insulin-independent at the end of the 15 months follow-up. In Group 2 two subjects resumed insulin. One subject had partial graft failure at 19 weeks posttransplant when immunosuppression was reduced during an infectious complication (scalenous myonecrosis and MSSA myonecrosis) and three units after an unlucky blunt abdominal trauma provoking an intrahepatic rebleeding 6 weeks posttransplant. No interventions were needed for any of the islet transplant recipients. No portal vein thrombosis was observed.

Medication-related events: All subjects lost weight with a mean decrease from 62.3 ± 4.5 kg to 59.3 ± 5.6 (p = 0.2) after islet transplantation. BMI was reduced significantly from 22.5 ± 1.2 to 21.6 ± 1.5 (p = 0.04). Group 2 lost insignificantly more weight than Group 1 (3.4 ± 2.2 vs. 2.5 ± 3.1 kg, p = 0.6).

Most subjects could tolerate the immunosuppressive regimen. One recipient in Group 2 developed viral stomatitis, severe anemia and elevated creatinine that resolved after switching from sirolimus to mycophenolate mofetil (22). As a cohort, there was no significant change in kidney function (0.78 ± 0.17 at base line to 0.93 ± 0.29 mg/dL after 15 months for Group 1, p = 0.11 and 0.97 ± 0.2 to 1.07 ± 0.41 for Group 2, p = 0.35). However, one subject in Group 1 and two subjects in Group 2 showed some increase in creatinine from the baseline (Figure 2). All recipients (10/10) developed transient anemia.
vertebral osteomyelitis). The second subject, who had severe preexisting gastroparesis and ongoing nausea, vomiting and weight loss, discontinued exenatide and resumed insulin 17 weeks post transplant. This subject received a second transplant and again became insulin-independent, but resumed insulin 5 months posttransplant. One subject experienced an increase in HbA1c to 6.5% and received a second islet preparation to avoid resuming insulin injections. Ultimately, subjects in Group 2 received a mean total EIN of 723 ± 461 in 1 (n = 4) or 2 (n = 2) islet infusions (Figure 4). During the 15 months observation period, none of the 10 patients in either group presented with complete graft failure.

Secondary endpoints

HbA1c: HbA1c reached normal range in both groups, decreasing from 7.2 ± 1.1% at baseline to 5.9 ± 0.4% (p = 0.001) after transplant. HbA1c decreased from 6.5 ± 0.6 at baseline to 5.6 ± 0.2 after at least two transplants in Group 1. HbA1c reached normal levels for subjects in Group 2 after one islet transplant, decreasing from 7.8 ± 1.0 at baseline to 6.1 ± 0.3 (Figure 3). It should be noted that the baseline HbA1c was significantly higher in Group 2 than Group 1 (p = 0.046).

Fructosamine: Fructosamine reached normal levels after transplant for subjects in both groups, decreasing from 455 ± 125 to 201 ± 45 (p = 0.001) after transplant. Fructosamine decreased from 350 ± 110 at baseline to 250 ± 40 after at least two transplants in Group 1. Fructosamine reached normal levels for subjects in Group 2 after one islet transplant, decreasing from 370 ± 120 at baseline to 250 ± 40 (Figure 3). It should be noted that the baseline fructosamine was significantly higher in Group 2 than Group 1 (p = 0.046).
296.7 ± 44.2 µmol/L at baseline to 244.8 ± 36.6 µmol/L (P = 0.01) after transplant.

Oral glucose tolerance test: At 12 months posttransplant, one subject in Group 1 showed diabetic oral glucose tolerance, one subject had borderline glucose intolerance, and two subjects showed a normal glucose tolerance. In Group 2, three subjects had impaired glucose tolerance, and two had diabetic glucose tolerance. One subject resumed insulin and was not tested.

Mixed meal test: The MMT showed a nondiabetic response to glucose stimulation testing with appropriate C-peptide response in all Group 1 subjects and in 4/5 of Group 2 subjects.

Glucagon stimulation test: At entry into the study, all subjects demonstrated absence of C-peptide (< 0.3 ng/mL) in response to GST and MMT. Posttransplant, all subjects became C-peptide positive and maintained normal levels of C-peptide for the entire study duration. In Group 1 all subjects showed significant increase of C-peptide after glucagon stimulation. In Group 2, 4 subjects underwent GST. One subject had a low response, though initial glucose level was low, which is known to reduce C-peptide response. All subjects demonstrated increased insulin production in response to glucagon stimulation.

Intravenous glucose tolerance test: IVGTT showed a similar glucose disappearance pattern in all patients. However, insulin response varied among individuals, with most presenting an intermediate acute insulin response (10).

Hypoglycemia: All subjects entered the study with multiple episodes of severe hypoglycemia without awareness. During the follow-up period, there was no recurrence of severe hypoglycemia. We applied Ryan’s formula to quantify pretransplant scores. After islet transplantation, we calculated actual HYPO scores from subjects’ daily blood sugar records. Pretransplant HYPO score was 841.8 ± 1217.9 and 812.8 ± 941.7 for Group 1 and 2 respectively. Posttransplant HYPO score was 0 and 33.5 ± 50.0 for Group 1 and 2 respectively (p < 0.01, compared to pretransplant values, Table 4 and Figure 5C). Two subjects in Group 2 presented with mild hypoglycemia after exenatide injection.

Glycemia: As shown in Figure 5A, before transplant subjects in both groups exhibited wide variability in daytime glucose levels. After transplantation, both groups clearly showed tighter, more regular glucose control (Figure 5B).

Challenge tests with and without exenatide: To further study the metabolic effect of exenatide on islet performance, we compared frequently sampled intravenous glucose tolerance tests (FSIVGTT), C-peptide, proinsulin, amylin and glucagon with and without exenatide.

Frequently sampled intravenous glucose tolerance tests: In Group 2 the AIRg (postglucose acute insulin response) increased from 2.2 ± 1.2 to 2.7 ± 1.6 after taking exenatide (p = 0.4). In Group 1 the AIRg in was 2.4 ± 0.9 (p = 0.8) without exenatide. In our subjects, we did not find any intrapatient relationship between the response to IVGTT and OGTT (Table 5).

Intravenous glucose tolerance testing: On IVGTT conducted after subjects injected 5 µg of exenatide, C-peptide increased from 1.9 ± 0.2 to 2.5 ± 0.6 (p = 0.3). Proinsulin increased from 5.7 ± 1.6 to 7.8 ± 2.3 (p = 0.3) and amylin increased from 7.2 ± 2.3 to 14.7 ± 6.6 (p = 0.1).

Proinsulin to insulin ratio: The proinsulin to insulin ratio decreased after exenatide in all subjects (7.1 ± 2.1 to 4.3 ± 1.9, p = 0.02), pointing toward more efficient proinsulin to insulin processing with exenatide.

Glucagon: Glucagon levels decreased significantly in all subjects. The delta decrease was 18.7 fold more significant after exenatide in all subjects (Δ change 8.9 ± 18.4 vs. 165.7 ± 46.4 w/o and with exenatide, respectively; p = 0.04).

Autoantibodies: Two subjects in Group 1 and 5 subjects in Group 2 tested positive for anti-GAD 65. Of the 10 subjects, only 2 (both from Group 2) were positive for anti-ICA 512. Neither subject remained insulin-independent.

Long-term follow-up

The study was originally designed for a 15-month posttransplant follow-up. We offered subjects an additional
5-year follow-up which 8/10 subjects accepted. At the time of writing this report, two of the four subjects from Group 1 remain insulin-independent with an average follow-up of 30.3 ± 0.9 months. These two subjects taking insulin, one was withdrawn from immunosuppression because of lobular breast carcinoma after 19 months. Subject 1 in Group 1 developed breast cancer after 19 months follow-up and insulin-independence. This patient was 64 years old at the time of diagnosis and underwent surgery and chemotherapy and she is doing well with recovery and no signs of distant disease and no local recurrence more than 1 year later. Subject 4 in Group 1, experienced graft failure 18 months posttransplant for unknown reasons, requires 27 – 30 units of insulin daily, and maintains HbA1c at 6.7. All subjects in Group 2 maintain HbA1c values between 5.8 and 6.3 with average follow-up of 21.2 ± 4.1 months. Four of the six subjects in Group 2 remain off insulin. Of the two subjects on insulin, subject 5 withdrew from the study and subject 9 was unable to tolerate exenatide and resumed 15 – 20 U of insulin daily by pump while awaiting a third transplant.

Discussion

This study demonstrates that the addition of exenatide and etanercept to the Edmonton protocol is associated with a significantly lower number of islets required initially to achieve insulin-independence. In our cohort, recipients of the Edmonton protocol received either two or three sequential islet transplantations at least 2 weeks apart to achieve insulin-independence. In our cohort, recipients of the Edmonton protocol received either two or three sequential islet transplantations at least 2 weeks apart to achieve insulin-independence. In our cohort, recipients of the Edmonton protocol received either two or three sequential islet transplantations at least 2 weeks apart to achieve insulin-independence. In our cohort, recipients of the Edmonton protocol received either two or three sequential islet transplantations at least 2 weeks apart to achieve insulin-independence.

Table 4: Outcome of the study 15 months posttransplantation

<table>
<thead>
<tr>
<th>Recipient No.</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight, kg</td>
<td>51.3</td>
<td>21.3</td>
<td>24.981 (3)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>68.9</td>
<td>22.4</td>
<td>14757 (2)</td>
</tr>
<tr>
<td>Total islet mass/kg</td>
<td>57.6</td>
<td>20.0</td>
<td>13541 (2)</td>
</tr>
<tr>
<td>(No. of transplants)</td>
<td>63.0</td>
<td>23.1</td>
<td>44262 (3)</td>
</tr>
<tr>
<td>Daily insulin, U/kg</td>
<td>60.2(6.5)</td>
<td>21.7(1.2)</td>
<td>24385 (14209)</td>
</tr>
<tr>
<td>HbA1c</td>
<td>69.4</td>
<td>22.0</td>
<td>5840 (1)</td>
</tr>
<tr>
<td>Hyposcore</td>
<td>54.9</td>
<td>21.1</td>
<td>6180 (1)</td>
</tr>
<tr>
<td>OGT IGT</td>
<td>56.7</td>
<td>17.5</td>
<td>21133 (2)</td>
</tr>
<tr>
<td>DM NL DM</td>
<td>61.8</td>
<td>22.3</td>
<td>7273 (1)</td>
</tr>
<tr>
<td>IGT IGT</td>
<td>58.5</td>
<td>21.0</td>
<td>20587 (2)</td>
</tr>
<tr>
<td>Autoantibodies (class I & II PRA)</td>
<td>55.8</td>
<td>19.8</td>
<td>7884 (1)</td>
</tr>
<tr>
<td>Anti-GAD65</td>
<td>55.8</td>
<td>20.6(1.6)</td>
<td>11483(7302)</td>
</tr>
<tr>
<td>Autoantibodies:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-ICA512</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BMI = body mass index; PRA = panel reactive antibodies; OGT = oral glucose tolerance test; IGT = impaired glucose tolerance; NL = normal; DM = diabetes mellitus. *These two subjects did not tolerate exenatide (<2 months taken).
A. Glycemic Control before Islet Transplant

B. Glycemic Control after Islet Transplant

C. Ryan HYPOscore before and after Islet Transplant

Figure 5: Glycemic control before (Panel A) and after (Panel B) transplantation in both groups. The top, bottom and line through the middle of the box correspond to the 75th percentile, 25th percentile, and 50th percentile respectively. The whiskers on the bottom extend from the 10th percentile and top 90th percentile, • represents the arithmetic mean. Panel C shows the frequency and severity of hypoglycemia before and after transplantation assessed by Ryan HYPOscore. HYPOscore was significantly decreased after transplant for both groups (p < 0.01). Two subjects in Group 2 experienced occasional, nonsevere, postprandial hypoglycemia while under exenatide.
islets than recipients of the Edmonton protocol. It is likely that a larger number of islets survived in subjects treated with the UIC protocol as compared to the amount of the islets in recipients of the Edmonton protocol. This suggests that the addition of etanercept and exenatide may improve islet engraftment. It would be interesting to see if administering exenatide for a longer period of time could enhance the ‘trophic’ effect of the drug. None of the patients treated with the UIC protocol achieved normal OGTT, showing IGT or DM responses, while normal OGTT was observed in 50% of the subjects treated with two to three transplants and the Edmonton protocol. The islet mass in UIC treated subjects is presumably adequate under normal condition. However, under stress and excess demand during OGTT, the islets in these subjects could not meet the demand, resulting in IGT or DM. This indicates that UIC protocol-treated patients have lower islet mass, which apparently did not increase under exenatide treatment. An alternative speculation may be considered as well: the endogenous GLP-1 may not increase under exenatide treatment. An alternative possibility is that the islets in these subjects could not meet the demand, and the islets in these subjects could not meet the demand, presumably due to the proposed effect of the GLP-1 analogues on augmentation of pancreatic β-cell response to glucose stimulation via receptors on the β-cells (28,29). However, in our subjects there was no significant increase, and only one subject, as well as a healthy, nondiabetic control showed an increase in the islet β-cell capacity to secrete insulin when enoxatide was given before the test.

Decrease in glucagon is a known effect of GLP-1 and its analogues that was recently validated by Ionut et al. (30), who tested the effect in dogs. They infused glucose in combination with GLP-1 similar to the meal response. Results showed no augmentation of insulin stimulation. The failure of GLP-1 to augment the insulin secretory response in their experimental setting suggested a possible indirect effect such as reduction in glucagon and is consistent with our results. In fact, we found a significant decrease of glucagon levels in subjects receiving exenatide.

It is important to note that the majority of subjects receiving the UIC protocol did not demonstrate any evidence of a potential ‘exhaustion effect’ after prolonged administration of exenatide on β-cell capacity to secrete insulin. The adverse effects of exenatide include mainly nausea and vomiting. Nausea is common with initial doses and tends to diminish over time. As a result of persistent nausea and vomiting, two of our subjects did not tolerate exenatide longer than 2 months. The side effects of etanercept include serious nervous system disorders such as multiple sclerosis and seizures, blood disorders, increased risk of lymphoma and injection site reactions. However, these have been reported in long-term treatment for autoimmune diseases such as rheumatoid arthritis, psoriasis, and ankylosing spondylitis; Group 2 subjects received only four doses of etanercept during the first 10 days posttransplant.

In our study, two subjects developed serious adverse events: a 64-year-old patient in the first group, treated with Edmonton protocol, developed breast cancer 19 months posttransplant and another subject receiving the UIC protocol developed diabetic myonecrosis on her neck, which was complicated by muscle and bone infection. The pathophysiology of diabetic myonecrosis is not well understood. Thromboembolism superimposed on diabetic small-vessel disease and subsequent ischemia-reperfusion injury has been suggested as the major underlying mechanism. A few cases of diabetic muscle infarction have been reported after simultaneous pancreas-kidney transplants. Underlying diabetic microangiopathy and hypercoagulability have been proposed as contributing factors in development of myonecrosis in these patients. Furthermore, tacrolimus and cyclosporine have been shown to be associated with thrombotic microangiopathy and impaired endothelial function. In our patient, the immunosuppression therapy may have had a contribution to this late infectious complication.

As this was a pilot study, its major weakness is the relatively small sample size and potential for both type II and type I error. In addition, the lack of a concurrent control group as opposed to the sequential study design is less than ideal. Furthermore, while four of six subjects in the UIC protocol required fewer islets than those in the standard Edmonton protocol, two subjects did need to resume insulin therapy. Since two subjects in Group 2 did not tolerate exenatide, its effects may have been underestimated in this pilot study.

Despite these caveats, the results presented are extremely promising. The islet equivalents utilized to achieve
insulin-independence in the UIC protocol arm of the study were lower than the sequential Edmonton protocol group and among the lowest reported in the literature. Few adverse long-term effects were seen, and while subjects on exenatide did experience high rates of nausea, this usually abated within 1 to 2 weeks.

In summary, utilization of exenatide and a short course of TNF alpha blockade shows promise in decreasing the need for multiple donors and warrants further investigation. While the presented protocol allowed for consistently achieving insulin-independence with lower islet mass, it did not lead to a measurable increase in functional islet mass over time. Future studies will have to investigate whether the speculated ‘trophic’ effect of exenatide could be enhanced by higher drug levels and prolonged administration. In our opinion, this will require improving the pharmacokinetics of exenatide, avoiding peaks and allowing for extended release. Such pharmacokinetics may decrease the likelihood of the reported side effects, and may allow for achieving higher overall drug exposure. Therefore, we suggest that different treatment regimens with exenatide (e.g. extended release formulations) should be investigated in future studies.

Acknowledgments

This work was supported by funding from the College of Medicine, University of Illinois at Chicago. J.O. and J.M. were supported by the Islet Cell Resource Center NIH grant (RFA-RR 05–003), the Christopher Foundation and the Efroymson Foundation.

References

1. PE C. The limiting factor in the glycaemic management of Type I and Type II Diabetes. Diabetologia 2002; 45: 937–948.